If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-8x-884=0
a = 1; b = -8; c = -884;
Δ = b2-4ac
Δ = -82-4·1·(-884)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-60}{2*1}=\frac{-52}{2} =-26 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+60}{2*1}=\frac{68}{2} =34 $
| 5+3(y-4)=5(y+2-y | | 13x-40=38 | | -12=6/5m | | -2(2×-6)=-3x | | x+41+79=180 | | 8n+7.1=37.7 | | -4(-m+10)=9(-2m-1)-9m | | (x^2)+52=180 | | -4(3x-5)+x=(x+6) | | 11.48=k-5.24 | | G(x)=-5x+17 | | 24/8k+4=8 | | 7n+7n+6n=180 | | -2(4x+)=-10 | | 8(7p–1)–(2p+14)=20+19p | | X=2,5(x+7)=5x+12. | | x+70=28 | | 7n+6n-5=4n4 | | -10+k=-29 | | -14=7(x-1) | | F(x)=-9-6 | | 5-6p-p=-9-9p | | 10x+24=3x-39 | | 7k=-9k-6(-2k-6) | | 3x+5x-6x+7=-13 | | 30=5(-3+x) | | 3x-5=2-(1-4x) | | 16=5+9(b+7) | | 21x+13=3+21x | | 6w+3+3w=3(-4w-6) | | (x+8)2=62 | | -7+5y=37 |